Nonequilibrium phonon tuning and mapping in few-layer graphene with infrared nanoscopy

نویسندگان

چکیده

Electron-phonon interactions are fundamentally important physical processes responsible for many key discoveries in condensed matter physics and material sciences. Herein, by exploiting the scattering-type scanning near-field optical microscope (s-SNOM) excited with a femtosecond infrared (IR) laser, we explored strong coupling between IR phonons few-layer graphene (FLG) ultrahot electrons, which heated up intense laser field enhanced s-SNOM tip. More specifically, found that intensity of phonon resonance can be tuned systematically varying power controls electron temperature. Furthermore, high spatial resolution allows us to map local characteristics at sharp boundaries nanostructures. Our findings offer insights into intriguing behind electron-phonon nonequilibrium conditions open pathway manipulating means.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable infrared phonon anomalies in trilayer graphene.

Trilayer graphene in both ABA (Bernal) and ABC (rhombohedral) stacking sequences is shown to exhibit intense infrared absorption from in-plane optical phonons. The phonon feature, lying at ~1580 cm(-1), changes strongly with electrostatic gating. For ABC-stacked graphene trilayers, we observed a large enhancement in phonon absorption amplitude, as well as softening of the phonon mode, as the Fe...

متن کامل

Charge carriers in few-layer graphene films.

The nature of the charge carriers in 2D few-layer graphites (FLGs) has been recently questioned by transport measurements [K. S. Novoselov, Science 306, 666 (2004)10.1126/science.1102896] and a strong ambipolar electric field effect has been revealed. Our density functional calculations demonstrate that the electronic band dispersion near the Fermi level, and consequently the nature of the char...

متن کامل

Imaging stacking order in few-layer graphene.

Few-layer graphene (FLG) has been predicted to exist in various crystallographic stacking sequences, which can strongly influence the material's electronic properties. We demonstrate an accurate and efficient method to characterize stacking order in FLG using the distinctive features of the Raman 2D-mode. Raman imaging allows us to visualize directly the spatial distribution of Bernal (ABA) and...

متن کامل

Symmetry Breaking in Few Layer Graphene Films

Recently, it was demonstrated that the quasiparticle dynamics, the layer-dependent charge and potential, and the c-axis screening coefficient could be extracted from measurements of the spectral function of few layer graphene films grown epitaxially on SiC using angle-resolved photoemission spectroscopy (ARPES). In this article we review these findings, and present detailed methodology for extr...

متن کامل

Fe-catalyzed Etching of Graphene and Few-layer Graphene

Fe-catalyzed etching of graphite and few-layer graphene (FLG) has been used to create channels with desired crystalline edges [1,2]. Due to the strong Fe-C interaction, graphene can be etched through either carbon hydrogenation or carbon dissolution into Fe alone. In this work, we investigated the Fecatalyzed etching of graphene and few-layer graphene (FLG) in forming gas (10% H2/90% N2) or N2....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.103.l201407